Abstract
Let K be a number field and φ ∈ K(z) a rational function. Let S be the set of all archimedean places of K and all non-archimedean places associated to the prime ideals of bad reduction for φ. We prove an upper bound for the length of finite orbits for φ in ℙ 1 ( K) depending only on the cardinality of S.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.