Abstract

In [5], Mao and Hassibi started the study of finite groups that violate the Ingleton inequality. They found through computer search that the smallest group that does violate it is the symmetric group of order 120. We give a general condition that proves that a group does not violate the Ingleton inequality, and consequently deduce that finite nilpotent and metacyclic groups never violate the inequality. In particular, out of the groups of order up to 120, we give a proof that about 100 orders cannot provide groups which violate the Ingleton inequality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.