Abstract
Finite motion analysis of parallel mechanisms (PMs) denotes formulating the map between finite motion of end-effector and those of its component limbs. By employing conformal geometric algebra (CGA), this paper presents an analytical and accurate method to analyze the finite motions of PMs with parasitic motions. Herein, parasitic motions are defined as the dependent motions in the constraint Degrees-of-Freedom (DoFs) of PMs. Firstly, description of rigid body transformations based on CGA is reviewed. Then, the intersection algorithm of finite motions is introduced by exploiting the algebraic properties of CGA. Based on this, a method to formulate the finite motions of PMs with parasitic motions is proposed. Finally, Z3 mechanism is sketched as example by utilizing the approach. This method facilitates the invention of new mechanisms and can also be applied in the finite motion analysis of other kinds of PMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.