Abstract

While right‐censored data are very common in survival analysis, they may also occur in the case of count data. The literature contains models to treat such right‐censored count data. In this paper, we want to address issues of heterogeneity and clustering in this context. We propose a finite mixture of censored Poisson regressions to accommodate heterogeneity and also identify clusters in right‐censored count data. We also develop an expectation maximization algorithm to facilitate the estimation of such models and discuss the computational aspects of the proposed algorithm. We then present results based on simulated data to show the effect of censoring in estimation. We also present a marketing application of the proposed approach involving the number of renewals of magazine subscriptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.