Abstract

Finite mixture models have been widely used for the modeling and analysis of data from a heterogeneous population. Moreover, data of this kind can be subject to some upper and/or lower detection limits because of the restriction of experimental apparatus. Another complication arises when measures of each population depart significantly from normality, for instance, in the presence of heavy tails or atypical observations. For such data structures, we propose a robust model for censored data based on finite mixtures of multivariate Student- t distributions. This approach allows us to model data with great flexibility, accommodating multimodality, heavy tails and also skewness depending on the structure of the mixture components. We develop an analytically simple, yet efficient, EM-type algorithm for conducting maximum likelihood estimation of the parameters. The algorithm has closed-form expressions at the E-step that rely on formulas for the mean and variance of the multivariate truncated Student- t distributions. Further, a general information-based method for approximating the asymptotic covariance matrix of the estimators is also presented. Results obtained from the analysis of both simulated and real datasets are reported to demonstrate the effectiveness of the proposed methodology. The proposed algorithm and methods are implemented in the new R package CensMixReg .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.