Abstract

A group is called metacyclic in case both its commutator subgroup and commutator quotient group are cyclic. Thus a metacyclic group is a cyclic extension of a cyclic group, and metacyclic groups are among the best understood of the nonabelian groups. Many interesting groups are metacyclic. For instance, the dihedral groups and the “odd” dicyclic groups are metacyclic; see [4, pp. 9–11] for more examples. Here we shall consider the actions of these groups on bordered Klein surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.