Abstract
Partially observable Markov decision processes (POMDPs) are standard models for dynamic systems with probabilistic and nondeterministic behaviour in uncertain environments. We prove that in POMDPs with long-run average objective, the decision maker has approximately optimal strategies with finite memory. This implies notably that approximating the long-run value is recursively enumerable, as well as a weak continuity property of the value with respect to the transition function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.