Abstract
A distributed system model is studied, where individual agents play repeatedly against each other and change their strategies based upon previous play. It is shown how to model this environment in terms of continuous population densities of agent types. A complication arises because the population densities of different strategies depend upon each other not only through game payoffs, but also through the strategy distributions themselves. In spite of this, it is shown that when an agent imitates the strategy of his previous opponent at a sufficiently high rate, the system of equations which governs the dynamical evolution of agent populations can be reduced to one equation for the total population. In a sense, the dynamics 'collapse' to the dynamics of the entire system taken as a whole, which describes the behavior of all types of agents. We explore the implications of this model, and present both analytical and simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.