Abstract

We investigate the Berezinskii-Kosterlitz-Thouless transitions for the square-lattice six-state clock model with the corner-transfer matrix renormalization group (CTMRG). Scaling analyses for effective correlation length, magnetization, and entanglement entropy with respect to the cutoff dimension m at the fixed point of the CTMRG provide transition temperatures consistent with a variety of recent numerical studies. We also reveal that the fixed-point spectrum of the corner-transfer matrix in the critical intermediate phase of the six-state clock model is characterized by the scaling dimension consistent with the c=1 boundary conformal field theory associated with the effective Z_{6} dual sine-Gordon model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call