Abstract

In this paper we obtain a description of the Hermitian operators acting on the Hilbert space $\C^n$, description which gives a complete solution to the over parameterization problem. More precisely we provide an explicit parameterization of arbitrary $n$-dimensional operators, operators that may be considered either as Hamiltonians, or density matrices for finite-level quantum systems. It is shown that the spectral multiplicities are encoded in a flag unitary matrix obtained as an ordered product of special unitary matrices, each one generated by a complex $n-k$-dimensional unit vector, $k=0,1,...,n-2$. As a byproduct, an alternative and simple parameterization of Stiefel and Grassmann manifolds is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.