Abstract

The Rayleigh-Taylor (RT) instability in Z pinches with sheared axial flow (SAF) is analyzed using finite Larmor radius (FLR) magnetohydrodynamic theory, in whose momentum equation the FLR effect (also referred to as the effect of gyroviscosity) is introduced through an anisotropic ion (FLR) stress tensor. A dispersion relation is derived for the linear RT instability. Both analytical and numerical solutions of the dispersion equation are given. The results indicate that the short-wavelength modes of the RT instability can be stabilized by a sufficient FLR, whereas the long-wavelength modes can be stabilized by a sufficient SAF. In the small-wavenumber region, for normalized wavenumber K<2.4, the hybrid RT/KH (Kelvin-Helmholtz) instability is shown to be the most difficult to stabilize. However the synergistic effect of the SAF and gyroviscosity can mitigate both the RT instability in the large-wavenumber region (K>2.4) and the hybrid RT/KH instability in the small-wavenumber region. In addition, this synergistic effect can compress the RT instability to a narrow wavenumber region. Even the thorough stabilization of the RT instability in the large-wavenumber region is possible with a sufficient SAF and a sufficient gyroviscosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call