Abstract
This paper proposes a distributed adaptive dynamic programming scheme to investigate the optimal tracking control problem for finite-horizon non-linear interconnected systems with constraint inputs under aperiodic sampling. A N-player nonzero-sum differential game system is constructed with the presented non-linear interconnected system and the tracking error system by introducing the augment vectors. To address the problems of constrained-input and finite-horizon control, a non-quadratic utility function and a finite-horizon cost function are utilized which will arise in the time-varying Hamilton–Jacobi (HJ) equation. Then, a periodic event-triggered scheme is designed to realize aperiodic sampling, where the consumption of communication resources is reduced and the Zeno behavior is avoided. Under the designed periodic event-triggered scheme, the time-varying HJ equation is almost impossible to get an analytical solution due to its hybrid properties and non-linearity. Therefore, the critic neural networks are used to estimate the optimal solution of the HJ equation, and the weight update law is constructed to guarantee the uniformly ultimate bounded of approximated errors. Further, the hybrid nonzero-sum differential game is confirmed to be uniformly ultimate bounded by using the Lyapunov theory. Finally, the obtained distributed PET control strategy is successfully applied to dispose the missile-target intercepter problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.