Abstract

ABSTRACT Direct identification of continuous-time dynamical models from sampled data is now a mature discipline, which is known to have many advantages with respect to indirect approaches based on the identification of discretised models. This paper faces the problem of continuous-time identification of linear time-invariant systems through finite-horizon numerical integration and least-square estimation. The bias in the least-squares estimator due to the noise corrupting the signal observations is quantified, and the benefits of numerical integration in the attenuation of this bias are discussed. An extension of the approach which combines numerical integration, least-squares estimation and particle swarm optimisation is proposed for the identification of nonlinear systems and nonlinear-in-the-parameter models, and then applied to the estimation of the torque-displacement characteristic of a commercial variable stiffness actuator driving a one-degree-of-freedom pendulum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.