Abstract

Let G be a finite group and σ = {σ i |i∈I} be a partition of the set of all primes P. A set H of subgroups of G is said to be a complete Hall σ-set of G if every non-identity member of H is a Hall σ i -subgroup of G and H contains exactly one Hall σ i -subgroup of G for every σ i ∈ σ(G). A subgroup H is said to be σ-permutable if G possesses a complete Hall σ-set H such that HA x = A x H for all A ∈ H and all x ∈ G. Let H be a subgroup of G. Then we say that: (1) H is σ-embedded in G if there exists a σ-permutable subgroup T of G such that HT = H σG and H ∩ T ≤ H σG , where H σG is the subgroup of H generated by all those subgroups of H which are σ-permutable in G, and H σG is the σ-permutable closure of H, that is, the intersection of all σ-permutable subgroups of G containing H. (2) H is σ-n-embedded in G if there exists a normal subgroup T of G such that HT = H G and H ∩ T ≤ H σG . In this paper, we study the properties of the new embedding subgroups and use them to determine the structure of finite groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call