Abstract

Suppose that a finite group G admits a Frobenius group of automorphisms FH of coprime order with cyclic kernel F and complement H such that the fixed-point subgroup CG(H) of the complement is nilpotent of class c. It is proved that G has a nilpotent characteristic subgroup of index bounded in terms of c, |CG(F)|, and |F| whose nilpotency class is bounded in terms of c and |H| only. This generalizes the previous theorem of the authors and P. Shumyatsky, where for the case of CG(F)=1 the whole group was proved to be nilpotent of (c,|H|)-bounded class. Examples show that the condition of F being cyclic is essential. Results based on the classification provide reduction to soluble groups. Then representation theory arguments are used to bound the index of the Fitting subgroup. Lie ring methods are used for nilpotent groups. A similar theorem on Lie rings with a metacyclic Frobenius group of automorphisms FH is also proved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.