Abstract

We establish an asymptotic expansion for the number |Hom (G,S n )| of actions of a finite groupG on ann-set in terms of the order |G|=m and the numbers G (d) of subgroups of indexd inG ford|m. This expansion and related results on the enumeration of finite group actions follow from more general results concerning the asymptotic behaviour of the coefficients of entire functions of finite genus with finitely many zeros. As another application of these analytic considerations we establish an asymptotic property of the Hermite polynomials, leading to the explicit determination of the coefficientsC ν(α;z) in Perron's asymptotic expansion for Laguerre polynomials in the cases α=±1/2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.