Abstract
We prove that on any log Fano pair of dimension $n$ whose stability threshold is less than $\frac{n+1}{n}$, any valuation computing the stability threshold has a finitely generated associated graded ring. Together with earlier works, this implies that (a) a log Fano pair is uniformly K-stable (resp. reduced uniformly K-stable) if and only if it is K-stable (resp. K-polystable); (b) the K-moduli spaces are proper and projective; and combining with the previously known equivalence between the existence of Kähler-Einstein metric and reduced uniform K-stability proved by the variational approach, (c) the Yau-Tian-Donaldson conjecture holds for general (possibly singular) log Fano pairs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.