Abstract

We show that an n-gap periodic quantum system with parity-even smooth potential admits 2n − 1 isospectral super-extensions. Each is described by a tri-supersymmetry that originates from a higher-order differential operator of the Lax pair and two-term nonsingular decompositions of it; its local part corresponds to a spontaneously partially broken centrally extended nonlinear N = 4 supersymmetry. We conjecture that any finite-gap system having antiperiodic singlet states admits a self-isospectral tri-supersymmetric extension with the partner potential to be the original one translated for a half-period. Applying the theory to a broad class of finite-gap elliptic systems described by a two-parametric associated Lamé equation, our conjecture is supported by the explicit construction of the self-isospectral tri-supersymmetric pairs. We find that the spontaneously broken tri-supersymmetry of the self-isospectral periodic system is recovered in the infinite-period limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.