Abstract
This paper investigates a finite-frequency H-/H∞ fault detection method for discrete-time T-S fuzzy systems with unmeasurable premise variables. To minimize the effect of uncertainties on system performance and maximize that of actuator faults on the generated residual, both the H∞ disturbance attenuation index and finite-frequency H- fault sensitivity index are utilized. Since the premised variables are unmeasurable, the existing generalized Kalman-Yakubovich-Popov lemma cannot be directly extended to these nonlinear systems. In this paper, the conditions of allowing one to design the proposed H-/H∞ fault detection observer are established and transformed into linear matrix inequalities. Some scalars and slack matrices are introduced to bring extra degrees of freedom in observer design. Finally, a single-link robotic manipulator model is utilized to illustrate that the proposed technique can detect faults with smaller amplitude than that required by a normal H∞ observer technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.