Abstract
We study the formal neighborhoods at rational non-degenerate arcs of the arc scheme associated with a toric variety. The first main result of this article shows that these formal neighborhoods are generically constant on each Nash component of the variety. Furthermore, using our previous work, we attach to every such formal neighborhood, and in fact to every toric valuation, a minimal formal model (in the class of stable isomorphisms) which can be interpreted as a measure of the singularities of the base-variety. As a second main statement, for a large class of toric valuations, we compute the dimension and the embedding dimension of such minimal formal models, and we relate the latter to the Mather discrepancy. The class includes the strongly essential valuations, that is to say those the center of which is a divisor in the exceptional locus of every resolution of singularities of the variety. We also obtain a similar result for monomial curves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.