Abstract

AbstractStarting with a mathematical statement of the convergence requirements for an element stiffness matrix, the paper discusses displacement shape functions that may be used in connection with the potential energy principle. In short, these functions must be force orthogonal and energy orthogonal, but they need not be conforming (satisfy interelement compatibility). It is shown that the requirements to the displacement functions may be greatly relaxed through slight modifications of the coupling stiffness between fundamental and higher order displacement modes. Several alternative formulations are examined. In particular, a new ‘free formulation’ is suggested. Using this form, which is very simple, the only requirement to the displacement patterns used is that they should contain the fundamental deformation modes and be linearly independent. Applications of the theory to triangular and rectangular plate bending elements are shown; the simple stiffness matrix for the latter is given explicitly. The numerical results compare favourably with other types of finite elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.