Abstract
Herein Finite elements analysis (FEA) study assesses the adequacy and accuracy of five failure criteria (Von Mises (VM), Tresca, maximum principal (S1), minimum principal (S3), and Hydrostatic pressure) for the study of tooth as a structure (made of enamel, dentin, and cement), along with its stress absorption-dissipation ability. Eighty-one 3D models of the second lower premolar (with intact and 1-8 mm reduced periodontium) were subjected to five orthodontic forces (intrusion, extrusion, tipping, rotation, and translation) of 0.5 N (approx. 50 gf) (in a total of 405 FEA simulations). Only the Tresca and VM criteria showed biomechanically correct stress display during the 0-8 mm periodontal breakdown simulation, while the other three showed various unusual biomechanical stress display. All five failure criteria displayed comparable quantitative stress results (with Tresca and VM producing the highest of all), showing the rotational and translational movements to produce the highest amount of stress, while intrusion and extrusion, the lowest. The tooth structure absorbed and dissipated most of the stress produced by the orthodontic loads (from a total of 0.5 N/50 gf only 0.125 N/12.5 gf reached PDL and 0.01 N/1 gf the pulp and NVB). The Tresca criterion seems to be more accurate than Von Mises for the study of tooth as structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.