Abstract
Abstract Crashworthiness focuses on the safety and protection of occupants. In addition, not only do energy absorbing members have to absorb sufficient collision energy, but the vehicle structure must be lightweight to improve power consumption. Nevertheless, estimating vehicle crashworthiness is experimentally expensive and time-consuming. Explicit nonlinear finite element analysis (FEA) is probably the most commonly used modelling technique to evaluate vehicle behaviour during a crash. However, commercial FE software still lacks efficient explicit modelling of lightweight graphene-based nano-composites. This work develops a simple approach to studying 3-phases hybrid fibres/graphene nanoplatelets-reinforced polymer matrix composites through multiscale modelling. Thermo-elasto-plastic response of composites is considered. The heterogeneous material problem is resolved through a kinematic integral equation. A linear spring model LSM is adopted to account for the interfacial behaviour in a modified Mori-Tanaka scheme The non-linear response is established in the framework of the J2 plasticity flow rule coupled with the “Lemaitre-Chaboche” ductile damage. The considered material is short glass -fibres/graphene nanoplatelet/Polyamide-Nylon 6 composite. The model is implemented as a UMAT within LS-DYNA® software for automotive crashworthiness applications. The results highlight the crash performance’s impact, incorporating the influence of the interfacial behaviour and material damage on the peak crash force and specific energy absorption SEA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.