Abstract
In this paper, we use an extended form of the finite element method to study failure in polycrystalline microstructures. Quasi-static crack propagation is conducted using the extended finite element method (X-FEM) and microstructures are simulated using a kinetic Monte Carlo Potts algorithm. In the X-FEM, the framework of partition of unity is used to enrich the classical finite element approximation with a discontinuous function and the two-dimensional asymptotic crack-tip fields. This enables the domain to be modeled by finite elements without explicitly meshing the crack surfaces, and hence crack growth simulations can be carried out without the need for remeshing. First, the convergence of the method for crack problems is studied and its rate of convergence is established. Microstructural calculations are carried out on a regular lattice and a constrained Delaunay triangulation algorithm is used to mesh the microstructure. Fracture properties of the grain boundaries are assumed to be distinct from that of the grain interior, and the maximum energy release rate criterion is invoked to study the competition between intergranular and transgranular modes of crack growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.