Abstract

This study explores the relationship between impact severity and resulting pulmonary contusion (PC) for four impact conditions using a rat model of the injury. The force-deflection response from a Finite Element (FE) model of the lung was simultaneously matched to experimental data from distinct impacts via a genetic algorithm optimization. Sprague-Dawley rats underwent right-side thoracotomy prior to impact. Insults were applied directly to the lung via an instrumented piston. Five cohorts were tested: a sham group and four groups experiencing lung insults of varying degrees of severity. The values for impact velocity (V) and penetration depth (D) of the cohorts were Group 1, (V = 6.0 m · s(-1), D = 5.0 mm), Group 2, (V = 1.5 m · s(-1),D = 5.0 mm), Group 3, (V = 6 m · s(-1), D = 2.0 mm), and Group 4, (V = 1.5 m · s(-1), D = 2.0 mm). CT scans were acquired at 24 h, 48 h, and 1 week post-insult. Contusion volume was determined through segmentation. FE-based injury metrics for PC were determined at 24 h and 1 week post-impact, based on the observed volume of contusion and first principal strain. At 24 h post-impact, the volume of high radiopacity lung (HRL) was greatest for the severe impact group (mean HRL = 9.21 ± 4.89) and was significantly greater than all other cohorts but Group 3. The concurrent optimization matched simulated and observed impact energy within one standard deviation for Group 1 (energy = 3.88 ± 0.883 mJ, observed vs. 4.47 mJ, simulated) and Group 2 (energy = 1.46 ± 0.403 mJ, observed vs. 1.50 mJ, simulated) impacts. Statistically significant relationships between HRL and impact energy are presented. The FEA-based injury metrics at 24 h post-contusion are ε(max) · ε(max) exceeding 94.5 s(-1), ε (max) exceeding 0.284 and ε(max) exceeding 470 s(-1). Thresholds for injury to the lung still present at 1 week post-impact were also determined. They are ε(max) · ε(max) exceeding 149 s(-1), ε (max) exceeding 0.343 and ε(max) exceeding 573 s(-1). A mesh sensitivity study found that thresholds based on strain rate were more sensitive to changes to mesh density than the threshold based on strain only.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call