Abstract

Finite element stiffness and consistent mass matrices are derived for helically wound, symmetrical composite tubes. The tubular element is considered to have constant cross-section and small deformations restricted to a plane. Each node has three degrees of freedom: axial and transverse displacement and rotation (slope of transverse displacement). Shell theory and lamination theory are used to formulate element stiffness matrices. The stiffness and mass matrices derived from the helically wound tubular composite material are reduced to symmetrically laminated composite beam. The free vibration and natural frequency are investigated for five different materials: steel, aluminum, carbon/N5280, Kevlar-49/epoxy and graphite/epoxy composites and various layup configurations. One application of a rotating flexible beam is investigated. The dynamic model of the flexible rotating beam includes the coupled effect between the rigid body motion and the flexible motion. The inverse dynamic simulation is performed by a prescribed driving torque in the numerical simulation. The influence of flexibility on rigid body motion are presented and discussed. From the numerical results, the composite material strongly possesses the lower power consumption and the passive control in damping the vibration of the structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call