Abstract

Consistent finite element formulations for beams made of anisotropic materials and taking into account non-classic, inhomogeneous torsion have been developed. The formulations are based on a kinematical hypothesis that includes exact solutions for three-dimensional solids under terminal loading. They describe warping of the cross-sections in and out of their planes as well as their rigid displacements and rotations. Their large deformation and geometrically exact description by finite rotations are considered for the cases of monoclinic, orthotropic and transversely isotropic materials. Exact solutions for the solid made from a monoclinic material have been deduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.