Abstract
The importance of the subchondral bone plate of the acetabulum when preparing the pelvis for a cemented acetabular cup during total hip arthroplasty (THA) has been investigated using finite element analysis. The effect of retaining or removing the subchondral bone plate and the use of anchoring holes are compared. Loading was applied via both hip joint contact force and the activity of up to 22 muscles at five stages through the load bearing phase of the gait cycle. Removing the subchondral bone plate leads to decreased stresses in the cancellous bone and slightly increased stresses in the cortical shell superior to the acetabulum. The differences between the two cases are small, nevertheless there are indications that removal of the subchondral bone plate reduces the stresses. Increasing the cement penetration depth leads to a slightly more rigid structure, due to cement penetrating the cancellous bone. Adding anchoring holes moves the position of the highest cancellous bone strains from the bone-cement interface into the cancellous bone. Thus removal of the subchondral bone plate should lead to an increased potential for cement penetration into the cancellous bone which should be beneficial for cup fixation and thus improve long term implant survival.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.