Abstract

Abstract This research work has been aimed at understanding the effects of different fiber orientations and different stacking sequences of composite laminates on their damage during drilling of CFRP/Al stack. Finite element code Abaqus/CAE has been used for the implementation and analysis of the numerical model. Surface-based cohesive behavior available in Abaqus/CAE contact pairs has been used to simulate delamination behavior in the adhesive interfaces. In order to use the Hashin damage criterion (for intra-laminar damage) available in the finite element code, continuum shell elements have been used for laminates. Three stacking sequences each with 24 layers including [0°]24, [0°/90°]12s, and [−45°/90°4/45°2/−45°]3s have been considered for this study. The display group manager available in Abaqus/CAE visualization module enabled the individual access of the damage in each layer. Two layers both at drill entry and at CFRP/Al interface were used to study peel-up and push-down delamination, respectively. Sequence [0°]24 was found to have the largest damaged in both entry and interfaces, while sequence [−45°/90°4/45°2/−45°]3s was found to show better resistance to delamination damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.