Abstract

AbstractMethods currently used for analyzing nanoindentation load-displacement data give good predictions of the contact area in the case of hard materials, but can underestimate the contact area by as much as 40% for soft materials which do not work harden. This underestimation results from the pile-up which forms around the hardness impression and leads to potentially significant errors in the measurement of hardness and elastic modulus. Finite element simulations of conical indentation for a wide range of elastic-plastic materials are presented which define the conditions under which pile-up is significant and determine the magnitude of the errors in hardness and modulus which may occur if pile-up is ignored. It is shown that the materials in which pile-up is not an important factor can be experimentally identified from the ratio of the final depth after unloading to the depth of the indentation at peak load, a parameter which also correlates with the hardness-to-modulus ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.