Abstract
The problem of steady axisymmetric flow and heat transfer in an incompressible micropolar fluid between two porous discs has been studied. A finite element analysis of the resulting system of nonlinear coupled differential equations representing the velocity, microrotation and temperature is presented. The numerical results for the radial and axial velocities, microrotation, temperature, skin friction, couple stress coefficient and the rate of heat transfer on the discs for different values of the micropolar parameter and the injection Renolds number have been obtained. A comparison of the results is made with those obtained through the quasilinearisation method as well as the series solution for the viscous case, thus proving the versatility of the finite element method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.