Abstract
The problem of a transient three dimensional MHD flow of an electrically conducting viscous incompressible rotating fluid past an impulsively started infinite horizontal porous plate taking into account the Hall current is presented. It is assumed that the fluid rotates with a constant angular velocity about the normal to the plate and a uniform magnetic field applied along the normal to the plate and directed into the fluid region. The magnetic Reynolds number is assumed to be so small that the induced magnetic field can be neglected. The non-dimensional equations governing the flow are solved by Galerkin finite element method. The expressions for the primary and secondary velocity fields are obtained in non-dimensional form. The effects of the physical parameters like M (Hartmann number), Ω (Rotation parameter) and m (Hall parameter) on these fields are discussed through graphs and results are physically interpreted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.