Abstract

Microstructure evolution in single crystal and polycrystal shape memory alloys under uniaxial tension and compression is investigated using the finite element method. To determine stress-strain diagrams and evolution of martensitic microstructure during external loading, a micromechanics based thermo-mechanical material model is used. The results reveal the significant difference between the local and global material behavior when defects are present. It is shown that defects act as nucleation sites and result in transformation localization, which in turn causes a sudden drop in the stress-strain diagram followed by a stress plateau. Moreover, it is found that some regions undergo reverse transformation although the elastic moduli of the phases are equal and the loading is monotonic. Increase in athermal friction, which is the resistance to interface propagation, is found to delay the phase transformation and different magnitudes of hysteresis are obtained at different friction values. The model predicts the tension-compression asymmetry observed in shape memory alloys. The simulation results are in qualitative agreement with several experimental studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.