Abstract

In scanning acoustic microscopy (SAM), the image quality depends on several factors such as noise level, resolution, and interaction of the waves with sample boundaries. The theoretical equations for the reflection coefficient and transmission coefficient are suitable for plane boundaries but fail for curved/rough boundaries. We presented a finite element method-based modeling for the loss coefficients in SAM. A focused and unfocused lens with a flat object, furthermore a focused lens with a curved object was selected for loss coefficients calculation. The loss calculation in terms of energy for defining the acoustic reflection and transmission losses and its dependence on the radius of curvature of the test object has also been presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.