Abstract

Residual stress is believed to play a significant role in the in vivo stress state of the arterial wall, but quantifying residual stress in vivo is challenging. Based on the well-known assumptions that residual stress is a result of heterogeneous arterial growth and that it homogenizes the transmural distribution of arterial wall stress, we propose a new anisotropic tissue growth model for the aorta to recover the three-dimensional residual stress field in a bi-layer human aortic wall. Finite element simulations showed that the predicted residual stress magnitude with this method are within the documented range for human aorta. Particularly, the homeostatic inter-layer stress difference is identified as a key parameter to quantify the opening angle. To the authors’ knowledge, this is the first finite element study employing anisotropic growth of aortic tissue in a bi-layer model to generate three-dimensional residual stress field, and the resultant opening angle can match with the experiments. A parametric study found that inter-layer stress homogeneity, arterial blood pressure, axial pre-stretch, and material stiffness strongly affect the residual stress field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.