Abstract

Shot peening is a surface engineering process acknowledged for its potential to develop fatigue strength and erosion-corrosion resistance of metallic materials. In the present study, a 3-D finite element model is employed to predict the effective parameters through a single shot impact and the accuracy of the simulation is validated using previous literatures. In order to induce uniform compressive residual stress patterns across the specimen, processing parameters such as shot velocity, impact angle and friction coefficient should be controlled. It is observed that by increasing the shot velocity and the friction coefficient, the depth of compressive residual stress increases. Moreover, a comparative study between isotropic and kinematic hardening models is performed to evaluate the significant role of the hardening models on the compressive residual stress. It is observed that the kinematic hardening model shows better compatibility with the experimental results compared to the isotropic hardening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call