Abstract

Laser additive manufacturing (LAM) technology has the advantages of short manufacturing cycles, low material waste rate, and design ability. It is especially suitable for preparing functionally gradient materials (FGM). However, due to the large temperature gradient and the change in material composition, the residual stress is very high, which will seriously affect the mechanical properties and manufacturing accuracy of the structure. In this study, the thermomechanical coupled finite element model based on the Bessel heat source is established, and the residual stress in LAM TC4/TC11 FGM is obtained. The results show that the Bessel heat source can effectively suppress the generation of residual stress in the additive manufacturing process, and the finite element results are consistent with the experimental results. Compared with the traditional Gaussian heat source, the maximal residual tensile stress is reduced by an average of 28.1%. The value of residual stress increases with the increase in the number of printing layers, and it increases with the increase of the laser power and decreases with the increase of the scanning speed. The overall trend is that the two sides are compressive stress and the middle is tensile stress. The research has important reference significance for the reasonable suppression of the residual stress in FGM produced by LAM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.