Abstract

Several authors have previously simulated chip formation and their behaviour at the orthogonal cutting process. In contrast the chip formation for grinding was less investigated. This paper introduces a quick-stop device which allows easy investigation of the chip formation for the grinding process. For this process a workpiece forced by compressed air is shot against a single grain diamond with a large negative rake angle. Cutting forces were measured with a piezo electric sensor and discussed for a cutting speed range from 10m/s up to 30m/s. In Abaqus/Explicit a lagrangian formulation based finite element model was built to describe the chip formation for the grinding process. Chip formation, stress and heat distribution in the workpiece material can be calculated by this simulation model. The material behaviour was described with the Johnson Cook law. The simulation results show a good correlation compared to the quick stop experiments. All in all this simulation leads to a better understanding of the chip formation during grinding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.