Abstract
Substructure models for vein matrix and persistent slip band (PSB) structures are extracted from a uniaxial mixtures model that was developed to simulate cyclic loading experiments on nickel single crystals oriented for single slip. Reverse magnetostriction is included as well. These substructure models are implanted in a single crystal plasticity framework with fully anisotropic elasticity. The resulting constitutive models are incorporated in finite element models to simulate the process of PSB macroband formation and propagation. Perturbation elements (PEs), elements assigned with PSB properties, are used as the loci for PSB macroband nucleation. Transition of elements with vein matrix properties to elements with PSB properties is triggered at integration points by a shear stress criterion applied on slip systems. The resulting finite element models successfully demonstrate the process of PSB formation and propagation, and plastic strain amplitude partitioning between vein matrix and PSB macrobands. The effect of model boundary constraints, strain increment dependence, mesh sensitivity, PE distribution, specimen axis misorientation, and PSB volume fraction generated is examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.