Abstract
AbstractSteel beam-column connections with posttensioned (PT) elements are proven systems that can provide adequate stiffness, strength, and ductility, while eliminating permanent deformations in a moment-resisting frame subjected to seismic loading. In this study, detailed three-dimensional finite-element (FE) models of steel beam-column connections with PT strands are developed and analyzed under cyclic loading. Efforts are made to overcome challenges in performing the nonlinear FE analysis of large-scale PT connections, which involves gap opening and closing behavior as well as contact and sliding phenomena. Geometric and material nonlinearities, preloaded bolts and strands are also considered in the modeling. Through a verification study, the results from the FE models are validated against prior experiments on interior PT connections with top-and-seat angles. Parametric studies are also conducted to investigate the effects of three factors on the cyclic performance of PT connections. The factors inve...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.