Abstract

Based on a single-domain model of myocardial conduction, isotropic and anisotropic finite element models of the myocardium are developed allowing excitation wave propagation to be studied. The Aliev-Panfilov phenomenological equations were used as the relations between the transmembrane current and the transmembrane potential. Interaction of an additional source of initial excitation with an excitation wave that passed and the spread of the excitation wave are studied using heart tomograms. A numerical solution is obtained using a splitting algorithm that allows the nonlinear boundary-value problem to be reduced to a sequence of simpler problems: ordinary differential equations and linear boundary-value problems in partial derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.