Abstract
A random and discontinuous microstructure is one of the most characteristic features of a low-density thermally bonded nonwoven material, and it affects their mechanical properties significantly. To understand their effect of microstructure on the overall mechanical properties of the nonwoven material, discontinuous models are developed incorporating random discontinuous structures representing microstructures of a real nonwoven material. Experimentally measured elastic material properties of polypropylene fibres are introduced into the models to simulate the tensile behaviour of the material for its both principle directions: machine direction and cross direction. Additionally, varying arrangements of bond points and schemes of fibres’ orientation distribution are implemented in the models to analyse the respective effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.