Abstract

This paper deals with the buckling of cylindrical shells under a dynamic shear load. The aim of our study is to compare static buckling load and buckling load during a sweep frequency excitation. First, we describe the special experimental device and the two Finite Element codes used in this study. In a second part static tests and corresponding Finite Element calculations are presented in order to have a reference buckling load and to understand the effect of initial imperfections. Then, a vibration analysis is performed in order to investigate the effect of geometric imperfection and a preload. In the last part, we discuss dynamic results. When we reach the first eigen frequency, the buckling load drops and the buckling deformations increase due to a parametric resonance. There is a coupling between vibration and buckling modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call