Abstract

A creep-fatigue crack growth model considering creep-fatigue interactions based on continuum damage mechanics was proposed in this paper. Numerical analyses of creep-fatigue crack growth of P91 steel at 625°C using compact specimens were conducted. The results agreed well with the experiment which indicated its good capability in predicting creep-fatigue crack growth behavior. The effects of initial crack depth, specimen dimension and hold time on crack growth behavior were investigated using the model. The results indicated that the increasing initial crack depth and specimen dimension promoted the crack growth rate, while the decreasing hold time accelerated the crack growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.