Abstract

Fatigue failures occur due to the application of fluctuating stresses that are much lower than the stress required to cause failure during a single application of stress. The process is dangerous because a single application of the load would not produce any ill effects, and a conventional stress analysis might lead to assumption of safety that does not exist. The fatigue process is thought to begin at an internal or surface flaw here the stresses are concentrated, and consists initially of shear flow along slip planes. The mechanisms of fatigue-crack propagation are examined with particular emphasis on the similarities and differences between cyclic crack growth in ductile materials, such as metals, and corresponding behavior in brittle materials, such as intermetallic and ceramics. Fatigue, as understood by materials technologists, is a process in which damage accumulates due to the repetitive application of leads that may be well below the yield point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.