Abstract
Dental implant is a biocompatible titanium device surgically placed into the jaw bone to support a prosthetic tooth crown in order to replace missing teeth. However, placement of an implant changes the normal mechanical environment of jawbone, which causes the bone density to redistribute and adapt to the new environment by remodelling. This study aims to predict the density distribution in human jawbone surrounding a dental implant. Based on some popular yet distinctive theories for bone remodelling, a new algorithm is proposed that takes into account both the ‘lazy zone’ effect and the self-organizational control process. The proposed algorithm is first verified by a two-dimensional (2D) plate model simulating bone tissue, then, a 2D finite element model of implant and jawbone is studied. The effects of two parameters, viz the reference value of strain energy density (SED) and the ‘lazy zone’ region, on density distribution are also investigated. The proposed algorithm is proven to be effective, and the predicted density distribution patterns correlate well with clinical observations. This study has demonstrated that consideration of the lazy zone is less important than consideration of the stress and strain (quantified as SED) induced within the bone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.