Abstract

Experiments showed that biofilms exhibit viscoelasticity under both displacement and stress loadings, irrespective of pellicles at liquid–air interface or biofilms at solid–liquid interface. However, the general theoretical models are lacking inuniformly and quantitatively describing biofilms’ viscoelastic behavior under various loading conditions. We use the linear viscoelastic theory — Generalized Maxwell model to describe the viscoelastic mechanical properties of biofilms, and study the responses of biofilms under different loadings, including various strain/stress loading rates and cyclic loadings, by finite element method. The results can capture the typical viscoelastic characteristics of biofilms, such as creep, hysteresis, energy dissipation and loading rate-dependent behavior. Our work provides a simple viscoelastic model not only for bacterial biofilms but also for other biological materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.