Abstract

This work is devoted to the development and validation of a fully coupled numerical methodology for the anisotropic sheet metal cutting processes’ simulation using the FEM. Both, the theoretical and numerical aspects of the proposed methodology, based on damage-behavior coupling are presented. The anisotropic elastoplastic behavior accounts for the non linear isotropic and kinematic hardening strongly coupled with the isotropic ductile damage under large plastic deformation. The classical Dynamic Explicit (DE) scheme is used to solve the associated initial and boundary value problem in the framework of the general purpose finite element code ABAQUS/EXPLICIT. The stress tensor together with all the other state variables at the end of any load increment are computed thanks to an iterative elastic prediction-plastic correction scheme applied to a reduced number of ordinary differential equations. For validation purpose the guillotining of an anisotropic/rolled sheet metal is simulated. The effects of some process technological parameters known to have influence on cut quality are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.