Abstract

Air pollution has been associated with several health problems. Detecting and measuring the concentration of harmful pollutants present in complex air mixtures has been a long-standing challenge, due to the intrinsic difficulty of distinguishing among these substances from interferent species and environmental conditions, both indoor and outdoor. Despite all efforts devoted by the scientific and industrial communities to tackling this challenge, the availability of suitable device technologies able to selectively discriminate these pollutants present in the air at minute, yet dangerous, concentrations and provide a quantitative measure of their concentrations is still an unmet need. Thermal conductivity detectors (TCDs) show promising characteristics that make them ideal gas sensing tools capable of recognising different gas analytes based on their physical fingerprint characteristics at the molecular level, such as their density, thermal conductivity, dynamic viscosity, and others. In this paper, the operation of TCD gas sensors is presented and explored using a finite element simulation of Joule heating in a sensing electrode placed in a gas volume. The results obtained show that the temperature, and hence, the resistance of the individual suspended microbridge sensor device, depends on the surrounding gas and its thermal conductivity, while the sensitivity and power consumption depend on the properties of the constitutive metal. Moreover, the electrode resistance is proven to be linearly dependent on the applied voltage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.