Abstract

This paper studies the static and dynamic mechanical behaviors of novel micro-electro-mechanical systems (MEMS) fiber-optical switch actuated by electrostatic attraction. The switch is composed of a skew plate, two drawing beams, a mirror and a substrate. The plate is restrained translationally at one end. The drawing beams provide additional restrain to the plate. The mirror is mounted on the plate. Three identical bending beams are inserted inside the plate to adjust the bending rigidity of the switch. Static and dynamic finite element (FE) simulations are implemented to obtain the mechanical characteristics of the minimum switching or pull-in voltages, the natural frequencies, mode shapes and responses under different levels of electrostatic attraction loads. A theoretical dynamic model is further developed to validate the FE simulation results. Good agreement is found between the FE simulation and the analytical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.